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SUMMARY

A three-dimensional (3-D) numerical method for solving the Navier–Stokes equations with a standard
k–� turbulence model is presented. In order to couple pressure with velocity directly, the pressure is
divided into hydrostatic and hydrodynamic parts and the arti�cial compressibility method (ACM) is
employed for the hydrodynamic pressure. By introducing a pseudo-time derivative of the hydrodynamic
pressure into the continuity equation, the incompressible Navier–Stokes equations are changed from
elliptic-parabolic to hyperbolic-parabolic equations. In this paper, a third-order monotone upstream-
centred scheme for conservation laws (MUSCL) method is used for the hyperbolic equations. A system
of discrete equations is solved implicitly using the lower–upper symmetric Gauss–Seidel (LU-SGS)
method. This newly developed numerical method is validated against experimental data with good
agreement. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: arti�cial compressibility method; hydrodynamic pressure; open channel �ows; k–�
turbulence model

1. INTRODUCTION

As computer capabilities have increased exponentially during the last decade, 3-D hydrody-
namic (or non-hydrostatic) pressure models [1–4] for free surface �ows have been developed
extensively. Because of the incompressibility of water, the time variation of density is
ignored, which makes solving for the pressure di�cult. Most of these models determine
the hydrodynamic pressure using a fractional-step method after decomposing the pressure
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into hydrostatic and hydrodynamic parts [3]. Usually, the hydrodynamic pressure is unknown
because it is a function of the velocity �eld. In the �rst step of the fractional-step method
velocities are calculated using the hydrodynamic pressure from the previous time step, which
may cause mass conservation errors in the incompressible continuity equation. In the second
step these errors can be eliminated by substituting corrected velocities (the velocities from the
�rst step plus a hydrodynamic pressure correction) into the continuity equation. This second
step results in an elliptic-type equation, called the pressure-Poisson equation, which can be
solved iteratively. Usually, the solution procedure for this pressure-Poisson equation method is
central processor unit (CPU) time expensive. Moreover, it can cause grid-scale pressure oscil-
lations, known as a checker-board pressure �eld [5], because of pressure–velocity decoupling
in a traditional collocated grid arrangement. As an alternative, the arti�cial compressibility
method (ACM) can be considered [6]. The main advantage of the ACM is that the pres-
sure can be coupled directly with the velocity �eld; this is possible only by adding a time
derivative of pressure into the incompressible continuity equation, leading to changing the
governing equations from elliptic-parabolic to hyperbolic-parabolic equations. Many authors
[7–9] have applied this method successfully. In addition, the ACM has been applied to free
surface �ows by a number of authors [10, 11]. In this paper, we decompose the pressure into
its hydrostatic and hydrodynamic parts, and the ACM is applied only to the hydrodynamic
pressure.

2. MATHEMATICAL FORMULATION

For free surface �ows, the hydrodynamic pressure Pd can be considered using the
pressure decomposition

P=Ph + Pd=�g(H − z) + Pd (1)

where P is the total pressure; Ph is the hydrostatic pressure, as a function of the water
surface elevation H and the vertical location z; � is the water density; and g is gravitational
acceleration. In order to couple the hydrodynamic pressure with the velocity �eld directly,
we add a time derivative of the hydrodynamic pressure into the incompressible continuity
equation, leading to

@
@t∗

(
pd
�

)
+
@u
@x
+
@v
@y
+
@w
@z
=0 (2)

where pd=Pd=�; t∗ is pseudo-time; u, v, and w are mean velocity components in the Carte-
sian x-, y-, and z-coordinates, respectively; and � is a coe�cient that represents the wave
speed of the hydrodynamic pressure. Note that (2) is di�erent from other ACM models [7–9]
which involve a time derivative of the total pressure. By adding the time derivative of the
hydrodynamic pressure into (2), the physical meaning of the original continuity equation is
modi�ed, but it is recovered when numerical solutions reach steady state.
In a generalized coordinate system (�; �; �; �), the incompressible Navier–Stokes equations

with (1) and (2) and the standard k–� equations [12] can be written in vector form as
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where
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Im =diag(0; 1; 1; 1; 1; 1)

U = �xu+ �yv+ �zw

V = �xu+ �yv+ �zw

W = �xu+ �yv+ �zw

(5)

J = |@(�; �; �)=@(x; y; z)| is the Jacobian of the transformation; ∇�i=(∇�;∇�;∇�) for i=1; 2; 3;
k is the turbulent kinetic energy (TKE); � is the dissipation rate; P is the turbulent production;
and c1 = 1 for the Navier–Stokes equation, 	k for the k equation, and 	� for the � equation.
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The turbulent eddy viscosity �T is determined using

�T = c

k2

�
(6)

Finally, the turbulence constants have been found to be c
=0:09, c1�=1:44, c2�=1:92,
	k =1:0, and 	�=1:3 [12]. In this transformation it is assumed the horizontal space
coordinates (�; �) are independent of time, leading to �t = �t =0.
For free surface evolution, the original incompressible continuity equation is integrated over

the depth, leading to the water surface equation
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where h is the depth (=H − zb); zb is the bottom elevation; and the 2-D transformed
velocities are
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1
h

[
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u dz + �y
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]

and V =
1
h

[
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∫ H

zb

v dz
]

(8)

3. NUMERICAL FORMULATION

3.1. Spatial discretization

For the viscous �uxes (Ev, Fv, and Gv) and the source term (S), a central di�erence
approximation is used. Since numerical representation of the inviscid �uxes (E, F, and G)
is crucial for overall stability and accuracy of the numerical model, we use the monotone
upstream-centred scheme for conservation laws (MUSCL) [13] which has been applied for
incompressible �ow by other authors [9, 14]. As an example, the �ux in the �-direction can
be written as

@E
@�

≈ 1
��
(E∗

i+1=2 − E∗
i−1=2) (9)

where �� is the grid increment; and i denotes a grid point in the �-direction. Variations in
the �- and �-directions are represented by j and k with grid spacing �� and ��, respectively.
The starred variables are called the numerical �uxes, and these can be expressed as

E∗
i+1=2 =E(Q

L
i+1=2) +A

−(Qi+1=2)(Q
R
i+1=2 −QL

i+1=2)

=E(QR
i+1=2)−A+(Qi+1=2)(Q

R
i+1=2 −QL

i+1=2) (10)

where QL
i+1=2 and Q

R
i+1=2 are the left and right states of Qi+1=2 [15], respectively. According

to the MUSCL method, they are de�ned as

QL
i+1=2 =Qi + 1

4[(1− �)(Qi −Qi−1) + (1 + �)(Qi+1 −Qi)]

QR
i+1=2 =Qi+1 − 1

4 [(1− �)(Qi+2 −Qi+1) + (1 + �)(Qi+1 −Qi)]
(11)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:617–633



ARTIFICIAL COMPRESSIBILITY METHOD FOR OPEN CHANNEL FLOWS 621

where � is chosen as 1=3, giving a third-order upwind interpolation. Qi+1=2 in (10) is deter-
mined using Roe’s mean [15]; here we have replaced this term by the arithmetic mean of
QL
i+1=2 and Q

R
i+1=2. Using a �ux di�erence method [15], the inviscid �ux Jacobian A (= @E=@Q)

can be divided into A+ and A−, where A±=(P�±P−1)�; �
±
� =(�� ± |��|)=2; and P� and

�� are matrices of eigenvalues and eigenvectors of A, respectively. In order to construct a
non-singular matrix of P� and P−1

� , a method similar to that of Rogers et al. [16] is applied,
as brie�y discussed in the Appendix.

3.2. Time discretization

For a 3-D problem, it is important to be able to develop a stable method using large time
increments so that large storage and CPU time requirements can be alleviated. This is true
especially for turbulent calculations because, for adequate accuracy, dense grid resolution is
required near walls. To achieve this, (3) is discretized using the implicit formula

�Qn
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]n
=Rn (12)

where �(·)n=(·)n+1−(·)n; n is the time level; �� is the time interval; and Rn is the right-hand
side of (12). Applying (9) with the MUSCL formula, and (11) for the inviscid �uxes on the
left-hand side of (12), leads to a large banded block matrix system of equations, which can
be inverted—but not easily. To simplify this, these implicit inviscid �uxes are approximated,
to �rst order, by dropping the higher-order terms in (11) while the explicit inviscid �uxes are
approximated by (9) and (11), resulting in the diagonally dominant form[
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where B and C are the inviscid Jacobians of F and G, respectively. In order to simplify the
coe�cient matrix, the source term is retained only in the explicit formulation and the viscous
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Jacobians are approximated by dropping the o�-diagonal elements, leading to

Av=
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Im; Bv=
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J
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In this numerical scheme, it is assumed further that

A+i−1=2 −A−
i+1=2 ≈A+ijk −A−

ijk (15)

and A±=(A ± rAI)=2 [17], where rA= max(|A|) is the spectral radius of A. With similar
approximations for B and C, substituting into (13) yields the lower–upper symmetric Gauss–
Seidel (LU-SGS) method [17]
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The resulting LU-SGS formula is solved easily using two sweeps: one forward (18) and
another backward (19)

(L+D)�Q∗=Rn =⇒ �Q∗=D−1(Rn − L�Q∗) (18)

(D+U)�Qn=D�Q∗ =⇒ �Qn= �Q∗ −D−1(U�Qn) (19)

It should be noted that matrix inversion in (18) and (19) is replaced by scalar division. The
LU-SGS method has an advantage over factorized formulae such as the alternating direction
implicit (ADI) method [18] in that factorization errors can be eliminated.
After obtaining Qn+1 (= �Qn +Qn), the water surface elevation is determined by solving

(7) implicitly using a method similar to that used for (3).

3.3. Boundary conditions

Near wall and bottom boundaries, all �ow variables vary rapidly. In order to reduce intensive
computation by imposing a large number of grid elements, a wall function is applied. Using
this method, boundary conditions are speci�ed at the �rst grid point z1 from the wall rather
than at the boundary itself. The velocity normal to each wall is set to zero while the two
tangential velocities are determined using a method similar to Stansby [3], which is based on
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the standard formulae for open channel �ows [19]:

u1
u∗
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
�
ln

(
30z1
ks

)
for rough walls

1
�
ln

(
9:05u∗z1

�

)
for smooth walls

(20)

where u1 is the velocity parallel to the boundary—which is calculated from the momentum
equations at z1, the normal distance of the �rst grid point from the boundary; the shear velocity
u∗ is related to the bottom shear stress �w as u∗=

√
�w=�; �=0:41 is the von Karman constant;

and ks is the roughness height. Equation (20) is only applicable in the log-law region where
30¡u∗z1=�¡ 100 [12]. Using this shear velocity, boundary conditions for k and � at the
wall [12] are

k=
u2∗√c
 and �=

|u3∗|
�z1

(21)

The hydrodynamic pressure at each wall is obtained using extrapolation of two interior values.
At the free surface, pd=0 and a zero normal gradient condition for u and v is applied.

The vertical velocity w is determined from the kinematic boundary condition,[
w=

@H
@t
+ u

@H
@x
+ v

@H
@y

]
z=H

(22)

Without wind stress, k and � are obtained [12] from

@k
@z
=0 and �=

(
k√c


)1:5
0:07�h

(23)

At the in�ow boundary, all dependent variables are speci�ed using experimental data or
assuming a uniform distribution, while at the outlet the normal gradients of these variables
are set to zero. More details of in�ow boundary conditions are described for each application.

3.4. Grid generation

In this paper, horizontal grids are distributed equally depending on the geometrical boundaries.
In the vertical direction, a grid clustering method similar to Ho�mann and Chiang [20] is used
to allow the concentration of grid points near the bottom and the surface boundary:

�= �1 + (1− �1) ln[{�2 + (2�1 + 1)(z − zb)=h− 2�1}={�2 − (2�1 + 1)(z − zb)=h+ 2�1}]
ln[(�2 + 1)=(�2 − 1)] (24)

where �1 and �2 control clustering location and density, respectively.
The inverse of (24) is given by

z= zb + h
(2�1 + �2){(�2 + 1)=(�2 − 1)}(�−�1)=(1−�1) + 2�1 − �2
(2�1 + 1)[1 + {(�2 + 1)=(�2 − 1)}(�−�1)=(1−�1)] (25)
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4. APPLICATION

In order to verify the accuracy and applicability of the current method, two test cases are
considered, the �rst involving open channel �ow with a dredged trench in the middle [21],
and the second a meandering channel with a rectangular cross section [22].

4.1. Case 1: Trench channel �ow

The trench channel �ow problem was originally examined experimentally in a channel 17m
long and 0:5m wide with 0:7m high side walls [21]. A number of authors have examined this
computationally: Alfrink and van Rijn [23] solve the problem using a rigid lid approximation;
and solutions allowing a free surface have been obtained using a standard k–� model [24]
and simpli�ed Reynolds stress models [25].
To reduce computational requirements, we have solved this problem by considering only

2:8m in the horizontal direction around the trench (see Figure 1). Initially an equally spaced
grid of 0:05m is used in the horizontal and lateral directions with 30 layers in the vertical
direction using �1 = 0:5 and �2 = 1:1 in (25). Figure 1 shows a cross section of the grid along
the y=0:25m centre plane. The �ve locations identi�ed in Figure 1 show where measured
data are available [21]. To assess the sensitivity of the solution to variations in grid size,
the initial grid arrangement has been re�ned using grid spacings of 0:025m and 0:0125m
horizontally with 40 and 50 vertical layers. For the time increment we set the Courant–
Friedrichs–Lewy (CFL) number to 30, which is approximately 0:05 s for the initial grid set-up;
this is 20 times larger than that used by Stansby and Zhou [24], even though the grid step in
the longitudinal �-direction is half of what they used. The simulation has been run for 200 s,
and we consider steady state solutions when |�pd|2 ≈ 10−3 where |�pd|2 is the Euclidian norm
of �pd=pn+1d − pnd. Figure 2 shows the convergence history of |�pd|2 and |�u|2 using only
0:05m grid spacing. Convergence for the �ner grids is slightly slower.
At the left-hand (in�ow) boundary, the u velocity is de�ned using the rough wall condition

in (20) and k and � are speci�ed using (21) with u∗=0:03m=s [24], while the other velocities
are set to zero. At the right-hand (out�ow) boundary, the radiation boundary conditions are
applied. Along the side walls, u, w, k, and � satisfy the zero �ux condition across the wall,
while v is zero.
A range of values of � from 0:5 to 10 was used to evaluate convergence rates of the numeri-

cal model. Similar to other authors [7, 8], a value of �=1 produced the most
acceptable convergence.

Figure 1. Cross section of trench channel geometry, with measurement sections (at 1–5) and grid
distribution, for a vertical plane at y=0:25m.
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Figure 2. Convergence history of the Euclidian norms for the hydrodynamic pressure |�pd|2 (dashed
line) and horizontal velocity |�u|2 (solid line) using 0:05m grid spacing.

Figure 3. Shear velocities u∗ from three di�erent grids (solid line: 0:05m grid space, dashed line:
0:025m grid space, dash–dotted line: 0:0125m grid space), experimental data (hollow circles) [21], and

published results (�lled circles) [24], along the centre line at y=0:25m.

In Figure 3, we compare the shear velocities calculated using (20) and the three di�erent
grid meshes along the centre line of y=0:25m with experimental data [22] and published
results [24]. Even with the largest grid space (0:05m), computed shear velocities agree rea-
sonably well with the experimental data. Decreasing the grid spacing produces steeper changes
at the beginning and end of the trench. In particular, results using the 0:0125m grid spacing
near x=2:2m show a sharp increase in the shear velocities. This is consistent with [25] and
is probably highlighted by the small grid spacing.
In Figure 4, the computed horizontal velocity (u), TKE (k), and shear stress (�xz) for

the 0.05 and 0:025m grids are compared with experimental data [21], indicating that overall
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Figure 4. Comparison of numerical solutions from two di�erent grids (solid line: 0:05m grid space,
dashed line: 0:025m grid space) with experimental data (circles) [21], for the trench channel �ow

problem along the centre line at y=0:25m: (a) u (m/s); (b) k (m2/s2); and (c) �xz (N/m2).

agreement is achieved; in addition, the model predicts circulation at locations 2 and 3 (x=0:6
and 1:3m, respectively), leading to negative velocities near the bottom. At these locations,
the results show that, as the grid is re�ned, gradients of the horizontal velocities increase
slightly. The largest discrepancy is observed at location 3. This may indicate the limitation
of a standard k–� model, in that only isotropic turbulence can be resolved. It is important to
note that the solutions from this model are as good as those of Stansby and Zhou [24] even
though much larger time steps have been used in our simulations. This indirectly indicates
the accuracy and applicability of the current ACM.

4.2. Case 2: Meandering channel �ow

The meandering channel �ow problem has been examined experimentally by Chang [22], and
numerically using a rigid lid approximation [26] and a free surface condition [4]. We have
simulated this problem using the computational grid shown in Figure 5, where a variable grid
has been used in the longitudinal direction, a constant grid in the transverse direction, and
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ARTIFICIAL COMPRESSIBILITY METHOD FOR OPEN CHANNEL FLOWS 627

Figure 5. Meandering channel geometry, with measurement sections (1–13) [22] and grid distribution
for the horizontal plane (lengths are shown in m).
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Figure 6. Transverse velocity v=Uo distributions over depth at Sections 1 and 9, with three di�erent
grid re�nements and the rigid lid approximation (for only the 116× 30× 20 grid): (a) y=B=0.83 at

section 1; and (b) y=B=0.17 at section 9.

a variable grid—using (25) with �1 = 0:5 and �2 = 1:2—in the vertical direction; this gives a
total of 116× 30× 20 nodes. Figure 5 also shows the locations of the measurement sections
(1–13) presented in Chang [22]. The in�ow boundary conditions used are: U =Uo = 0:355m=s
[26]; and V =W =0m=s. Similar to the previous test case, the radiation boundary conditions
are applied at the outlet. The smooth wall boundary condition (20) is applied along the bottom
and side walls.
In order to test the sensitivity of the solution to variation in grid size, the initial grid

spacing (in all directions) has been increased by factors of 1:5 and 2:0. In all cases, the time
increment has been kept at 0:2 s, and steady state solutions are considered after 500 s when
|�pd|2 ≈ 10−3.
Figure 6 shows the vertical distribution of the normalized transverse velocity v=Uo at

Section 9 (Figure 5) with the three di�erent grids, where B=2:34m is the width of the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:617–633



628 J. W. LEE ET AL.

Figure 7. Comparison of longitudinal velocities u=Uo between computed values (solid line: 174× 45× 30
grid, dashed line: 116× 30× 20 grid) and experimental data (circles) [22] at selected sections (1; 5; 9,

and 13) of the meandering channel.

channel. As the grids are re�ned, the vertical gradients tend to increase, although even dou-
bling the initial grid re�nement (i.e. halving the grid spacings) has little e�ect on the solution.
Because of this, the 116× 30× 20 and 174× 45× 30 grids have been used to develop all sub-
sequent results. An interesting aspect shown in Figure 6 is the di�erent vertical �ow regimes
at similar points from each of the lateral boundaries, a result of the meandering channel. In
this �gure, numerical solutions using the rigid lid approximation (not allowing free surface
changes) are included for the 116× 30× 20 grid, and compared with solutions where free sur-
face changes are allowed. The small changes between these results indicate that free surfaces
changes are minimal for this problem.
In Figures 7 and 8, computed normalized velocities u=Uo and v=Uo are compared with

experimental data [22] at Sections 1, 5, 9, and 13, showing strong secondary currents (lateral
velocities that vary in direction with depth), except at Section 5, which is located at a straight
section of the channel. In Figure 7, longitudinal velocities from the dense (174× 45× 30)
grid seem to be slightly overestimated while solutions from the coarse (116× 30× 20) grid
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Figure 8. Comparison of transverse velocities v=Uo between computed values (solid line: 174× 45× 30
grid, dashed line: 116× 30× 20 grid) and experimental data (circles) [22] at selected sections (1; 5; 9,

and 13) of the meandering channel.

are underestimated. As shown in Figure 8, computed velocities agree quite well with the
experimental data for the dense grid. However, the method discussed in this paper does
not accurately predict the small-scale circulation shown in the �rst (y=B=0:05) image at
Section 1 and the last (y=B=0:95) image at Section 13. As noted by other researchers [4, 26],
this de�ciency may be recti�ed by using a higher-order turbulence model. Ye and McCorquo-
dale [4] also mentioned di�culties that can arise in obtaining accurate measurement data in
such situations, as secondary circulation velocities tend to be one or two orders of magnitude
smaller than the longitudinal velocities.

5. CONCLUSION

In this paper, we have presented a numerical method for modelling turbulent open channel
�ows which has been used to solve for hydrodynamic pressure and velocities simultaneously
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by using an arti�cial compressibility method. For turbulence closure, the standard k–� model
is employed. In this numerical method, the hyperbolic-like advection terms are approxi-
mated using Roe’s �ux di�erence method with a third-order MUSCL method. The model
has been applied to two steady state test cases where data are available: the trench and me-
andering channel �ow problems. In both cases, the model has been shown to be accurate
using much larger time steps than used by previous researchers [24]. The second problem
identi�ed the need to consider higher-order turbulence models to attempt to better resolve
small-scale motions.

APPENDIX A

The inviscid Jacobian matrix is given by

Ai=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a� ax� ay� az� 0 0

ax axu+�+ a� ayu azu 0 0

ay axv ayv+�+ a� azv 0 0

az axw ayw azw +�+ a� 0 0

0 axk ayk azk �+ a� 0

0 ax� ay� az� 0 �+ a�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A1)

where Ai=A;B;C for i=1; 2; 3, respectively;

�= axu+ ayv+ azw (A2)

and

a�=
@�i
@�
; ax=

@�i
@x
; ay=

@�i
@y
; az=

@�i
@z
; with �i = �; �; � for i=1; 2; 3 (A3)

The Jacobian matrix can be diagonalized as

Ai=Pi�iP−1
i (A4)

where �i=diag(� + a� − c;� + a�;� + a�;� + a�;� + a�;� + a� + c) is a diagonal matrix
with eigenvalues of Ai; and c=

√
�2 + �b, with b= a2x + a

2
y + a

2
z .

We found the matrix of eigenvectors to be

Pi=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(� + c)c 0 0 0 0 −(�− c)c
ub− (� + c)ax x�i+1 0 0 x�i+2 ub− (�− c)ax
vb− (� + c)ay y�i+1 0 0 y�i+2 vb− (�− c)ay
wb− (� + c)az z�i+1 0 0 z�i+2 wb− (�− c)az

kb 0 1 0 0 kb

�b 0 0 1 0 �b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A5)
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The inverse of this matrix is given by

P−1
i =

1
|P| (p

−1
1 ; p

−1
2 ; p

−1
3 ; p

−1
4 ; p

−1
5 ; p

−1
6 ) (A6)

where

|P| = 2c(�2 − c2)(−axd1 + ayd2 − azd3) + 2c�b(ud1 − vd2 + wd3) (A7)

d1 = y�i+1z�i+2 − y�i+2z�i+1 ; d2 = x�i+1z�i+2 − x�i+2z�i+1 ; d3 = x�i+1y�i+2 − x�i+2y�i+1 (A8)

p−1
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−d1[ax(�− c)− ub] + d2[ay(�− c)− vb]− d3[az(�− c)− wb]
−2cb[−ax(y�i+2w − z�i+2v) + ay(x�i+2w − z�i+2u)− az(x�i+2v− y�i+2u)

−2cbk[axd1 − ayd2 + azd3]
−2cb�[axd1 − ayd2 + azd3]

−2cb[−ax(y�i+1w − z�i+1v) + ay(x�i+1w − z�i+1u)− az(x�i+1v− y�i+1u)
d1[ax(� + c)− ub]− d2[ay(� + c)− vb] + d3[az(� + c)− wb]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A9)

p−1
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(�− c)d1
2c[(�2 − c2)(ayz�i+2 − azy�i+2) + �b(y�i+2w − z�i+2v)]

−2�cbkd1
−2�cb�d1

−2c[(�2 − c2)(ayz�i+1 − azy�i+1) + �b(y�i+1w − z�i+1v)]
c(� + c)d1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A10)

p−1
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c(�− c)d2
−2c[(�2 − c2)(axz�i+2 − azx�i+2) + �b(x�i+2w − z�i+2u)]

2�cbkd2

2�cb�d2

2c[(�2 − c2)(axz�i+1 − azx�i+1) + �b(x�i+1w − z�i+1u)]
−c(� + c)d2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A11)
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p−1
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(�− c)d3
2c[(�2 − c2)(axy�i+2 − ayx�i+2) + �b(x�i+2v− y�i+2y)]

−2�cbkd3
−2�cb�d3

−2c[(�2 − c2)(axy�i+1 − ayx�i+1) + �b(x�i+1v− y�i+1y)]
c(� + c)d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A12)

p−1
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

|P|
0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; and p−1

6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

|P|
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A13)

From (A7) and (A8), d1; d2, and d3 are non-zero real numbers, which ensure the existence of
|P|. When the subindex �i in x�i , y�i , and z�i is greater than 3, the cyclic notation is applied,
that is �4 = �1 = �, etc.
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